The Effect of Freestream Turbulence on Deposition for Nozzle Guide Vanes

Author:

Whitaker Steven M.1,Prenter Robin2,Bons Jeffrey P.2

Affiliation:

1. Aerospace Research Center, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43235 e-mail:

2. Aerospace Research Center, The Ohio State University, Columbus, OH 43235

Abstract

An evaluation of the effect of freestream turbulence intensity on the rate of deposit accumulation for nozzle guide vanes (NGVs) was performed using the turbine reacting flow rig (TuRFR) accelerated deposition facility. The TuRFR allowed flows up to 1350 K at inlet Mach numbers of 0.1 to be seeded with coal fly ash particulate in order to rapidly evaluate deposit formation on CFM56 NGVs. Hot film and particle image velocimetry (PIV) measurements were taken to assess the freestream turbulence with and without the presence of a grid upstream of the NGVs. It was determined that baseline turbulence levels were approximately half that of the flow exiting typical gas turbine combustors and were reduced by approximately 30% with the grid installed. Deposition tests indicated that the rate of deposition increases as the freestream turbulence is increased, and that this increase depends upon the particle size distribution. For ash with a mass median diameter of 4.63 μm, the increase in capture efficiency was approximately a factor of 1.77, while for ash with a larger median diameter of 6.48 μm, the capture efficiency increased by a factor of 1.84. The increase in capture efficiency is due to the increased diffusion of particles to the vane surface via turbulent diffusion. Based on these results, smaller particles appear to be less susceptible to this mechanism of particle delivery. Overall, the experiments indicate that the reduction of turbulence intensity upstream of NGVs may lead to reduced deposit accumulation, and consequently, increased service life. A computational fluid dynamics (CFD) analysis was performed at turbulence levels equivalent to the experiments to assess the ability of built-in particle tracking models to capture the physics of turbulent diffusion. Impact efficiencies were shown to increase from 21% to 73% as the freestream turbulence was increased from 5.8% to 8.4%. An analysis incorporating the mass of the particles into the impact efficiency resulted in an increase of the mass-based impact efficiency from 17% to 27% with increasing turbulence. Relating these impact efficiencies directly to capture efficiencies, the predicted increase in capture efficiency with higher turbulence is less than that observed in the experiments. In addition, the variation in the impact efficiencies between the two ash sizes was smaller than the capture efficiency difference from experiments. This indicates that the particle tracking models are not capturing all of the relevant physics associated with turbulent diffusion of airborne particles.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3