Force Optimization Approaches for Common Anthropomorphic Grasps

Author:

Cloutier Aimee1,Yang James1

Affiliation:

1. Texas Tech University, Lubbock, TX

Abstract

A smart choice of contact forces between robotic grasping devices and objects is important for achieving a balanced grasp. Too little applied force may cause an object to slip or be dropped, and too much applied force may cause damage to delicate objects. Prior methods of grasping force optimization in literature have mostly assumed grasp only at the fingertips but have rarely considered how the whole hand grasps more common to anthropomorphic hands affect the optimization of grasping forces. Further, although numerical examples of grasping force optimization methods are routinely provided, it is often difficult to compare the performance of separate methods when they are evaluated using different parameters, such as the type of grasping device, the object grasped, and the contact model, among other factors. This paper presents three optimization approaches (linear, nonlinear, and nonlinear with linear matrix inequality (LMI) friction constraints) which are compared for an anthropomorphic hand. Numerical examples are provided for three types of grasp commonly performed by the human hand (cylindrical grasp, tip grasp, and tripod grasp) using both soft finger contact and point contact with friction models. Contact points between the hand and the object are predetermined. Results are compared based on their accuracy, computational efficiency, and other various benefits and drawbacks unique to each method. Future work will extend the problem of grasping force optimization to include consideration for variable forces and object manipulation.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Examining the Robustness of Grasping Force Optimization Methods Using Uncertainty Analysis;ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg;2018-04-30

2. Grasping Force Optimization Approaches for Anthropomorphic Hands;Journal of Mechanisms and Robotics;2017-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3