Examining the Robustness of Grasping Force Optimization Methods Using Uncertainty Analysis

Author:

Cloutier Aimee1,Yang James2

Affiliation:

1. Department of Mechanical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803 e-mail:

2. Mem. ASME Department of Mechanical Engineering, Human-Centric Design Research Lab, Texas Tech University, Lubbock, TX 79409 e-mail:

Abstract

The development of robust and adaptable methods of grasping force optimization (GFO) is an important consideration for robotic devices, especially those which are designed to interact naturally with a variety of objects. Along with considerations for the computational efficiency of such methods, it is also important to ensure that a GFO approach chooses forces which can produce a stable grasp even in the presence of uncertainty. This paper examines the robustness of three methods of GFO in the presence of variability in the contact locations and in the coefficients of friction between the hand and the object. A Monte Carlo simulation is used to determine the resulting probability of failure and sensitivity levels when variability is introduced. Two numerical examples representing two common grasps performed by the human hand are used to demonstrate the performance of the optimization methods. Additionally, the method which yields the best overall performance is also tested to determine its consistency when force is applied to the object's center of mass in different directions. The results show that both the nonlinear and linear matrix inequality (LMIs) methods of GFO produce acceptable results, whereas the linear method produces unacceptably high probabilities of failure. Further, the nonlinear method continues to produce acceptable results even when the direction of the applied force is changed. Based on these results, the nonlinear method of GFO is considered to be robust in the presence of variability in the contact locations and coefficients of friction.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contact Area-Based Modeling of Robotic Grasps Using Deformable Solid Mechanics;International Journal of Applied Mechanics;2021-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3