Investigation on Tripping in Magnetic Generator in Steam-Assisted Gravity Drainage Wells Based on Numerical Simulation

Author:

Chen Yong1,Su An Qiao1,Zhang Jin Tao2,Jia Zong Sheng1

Affiliation:

1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China

2. President’s Office of Petrochina Southwest Oil & Gas Field Company, Chengdu 610000, China

Abstract

Abstract Magnetic Guidance Technology can meet the precise measurement requirements when drilling steam-assisted gravity drainage (SAGD) oil wells. Magnetic generator is a key part in the Magnetic Guidance Technology. When magnetic generator is tripped into horizontal well, pump pressure and passing capacity of the magnetic source generator in the curved section need to be analyzed. So, a mathematical model of tripping in the magnetic generator is established. If curvature radius, deviation angle, and friction factor are known, the forces acting on the magnetic generator in different positions could be calculated. The finite element (FE) results show that: (1) with depth increasing in the curved section, the equivalent stress on the magnetic generator increases in a fluctuating manner, the contact area, friction drag, and energy loss increase. (2) The greater the hole curvature, the greater tripping in force and the higher pump pressure are needed. The lower friction coefficient is favorable to tripping in the magnetic generator. (3) The friction between the magnetic generator and tubing wall in the horizontal section is much less than that in the curved section. Field applications have shown that the maximum downforce is close to the result of finite element analysis. The research results provide a reasonable reference basis for smooth running of magnetic source generators with different trajectory conditions.

Funder

Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3