A Proxy Model for Predicting SAGD Production From Reservoirs Containing Shale Barriers

Author:

Zheng Jingwen1,Leung Juliana Y.1,Sawatzky Ronald P.2,Alvarez Jose M.2

Affiliation:

1. Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

2. InnoTech Alberta, Edmonton, AB T6N 1E4, Canada

Abstract

Artificial intelligence (AI) tools are used to explore the influence of shale barriers on steam-assisted gravity drainage (SAGD) production. The data are derived from synthetic SAGD reservoir simulations based on petrophysical properties and operational constraints gathered from the Suncor's Firebag project, which is representative of Athabasca oil sands reservoirs. The underlying reservoir simulation model is homogeneous and two-dimensional. Reservoir heterogeneities are modeled by superimposing sets of idealized shale barrier configurations on this homogeneous reservoir model. The individual shale barriers are categorized by their location relative to the SAGD well pair and by their geometry. SAGD production for a training set of shale barrier configurations was simulated. A network model based on AI tools was constructed to match the output of the reservoir simulation for this training set of shale barrier configurations, with a focus on the production rate and the steam-oil ratio (SOR). Then the trained AI proxy model was used to predict SAGD production profiles for arbitrary configurations of shale barriers. The predicted results were consistent with the results of the SAGD simulation model with the same shale barrier configurations. The results of this work demonstrate the capability and flexibility of the AI-based network model, and of the parametrization technique for representing the characteristics of the shale barriers, in capturing the effects of complex heterogeneities on SAGD production. It offers the significant potential of providing an indirect method for inferring the presence and distribution of heterogeneous reservoir features from SAGD field production data.

Funder

Alberta Innovates - Technology Futures

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3