Analytical and Computational Fluid Dynamics Models of Wells Turbines for Oscillating Water Column Systems

Author:

Ciappi L.1,Stebel M.2,Smolka J.2,Cappietti L.3,Manfrida G.1

Affiliation:

1. Department of Industrial Engineering, University of Florence, Firenze 50134, Italy

2. Institute of Thermal Technology, Silesian University of Technology, Gliwice 44-100, Poland

3. Department of Civil and Environmental Engineering, University of Florence, Firenze 50139, Italy

Abstract

Abstract The sea is an important renewable energy resource for its extension and the power conveyed by waves, currents, tides, and thermal gradients. Amongst these physical phenomena, sea waves are the source with the highest energy density and may contribute to fulfilling the global increase of power demand. Despite the potential of sea waves, their harnessing is still a technological challenge. Oscillating water column systems operating with Wells turbines represent one of the most straightforward and reliable solutions for the optimal exploitation of this resource. An analytical model and computational fluid dynamics models were developed to evaluate the functioning of monoplane isolated Wells turbines. For the former modeling typology, a blade element momentum code relying on the actuator disk theory was applied, considering the rotor as a set of airfoils. For the latter modeling typology, a three-dimensional multi-block technique was implemented to create the computational domain with a fully mapped mesh composed of hexahedral elements. The employment of circumferential periodic boundary conditions allowed for the reduction of computational power and time. The models use Reynolds-averaged Navier-Stokes (RANS) or u-RANS schemes with a multiple reference frame approach or the u-RANS formulation with a sliding mesh approach. The achieved results were compared with analytical and experimental literature data for validation. All the developed models showed good agreement. The analytical model is suitable for a fast prediction of the turbine operation on a wide set of configurations during the first design stages, while the computational fluid dynamics (CFD) models are indicated for the further investigation of the selected configurations.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference42 articles.

1. Assessing the Global Wave Energy Potential;Mork,2010

2. Quantifying the Global Wave Power Resource;Gunn;Renewable Energy,2012

3. Aerodynamic Conversion of Ocean Power From Wave to Wire;Curran;Energy Convers. Manage.,1998

4. Wave Energy Utilization: A Review of the Technologies;Falcão;Renewable Sustainable Energy Rev.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3