REEF3D::FNPF—A Flexible Fully Nonlinear Potential Flow Solver

Author:

Bihs Hans1,Wang Weizhi1,Pakozdi Csaba1,Kamath Arun1

Affiliation:

1. Marine Civil Engineering, Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, 7034 Trondheim, Norway

Abstract

Abstract In situations where the calculation of ocean wave propagation and impact on structures are required, fast numerical solvers are desired in order to find relevant wave events. Computational fluid dynamics (CFD)-based numerical wave tanks (NWTs) emphasize on the hydrodynamic details such as fluid–structure interaction, which make them less ideal for the event identification due to the large computational resources involved. Therefore, a computationally efficient numerical wave model is needed to identify the events both for offshore deep-water wave fields and coastal wave fields where the bathymetry and coastline variations have strong impact on wave propagation. In the current paper, a new numerical wave model is represented that solves the Laplace equation for the flow potential and the nonlinear kinematic and dynamics free surface boundary conditions. This approach requires reduced computational resources compared to CFD-based NWTs. The resulting fully nonlinear potential flow solver REEF3D::FNPF uses a σ-coordinate grid for the computations. This allows the grid to follow the irregular bottom variation with great flexibility. The free surface boundary conditions are discretized using fifth-order weighted essentially non-oscillatory (WENO) finite difference methods and the third-order total variation diminishing (TVD) Runge–Kutta scheme for time stepping. The Laplace equation for the potential is solved with Hypre’s stabilized bi-conjugated gradient solver preconditioned with geometric multi-grid. REEF3D::FNPF is fully parallelized following the domain decomposition strategy and the message passing interface (MPI) communication protocol. The numerical results agree well with the experimental measurements in all tested cases and the model proves to be efficient and accurate for both offshore and coastal conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3