An adaptive harmonic polynomial cell method for three-dimensional fully nonlinear wave-structure interaction with immersed boundaries

Author:

Tong Chao,Shao YanlinORCID,Bingham Harry B.1ORCID,Hanssen Finn-Christian W.2ORCID

Affiliation:

1. Department of Civil and Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé 1 , DK-2800 Kgs. Lyngby, Denmark

2. Department of Marine Technology, Centre for Autonomous Marine Operations and Systems (AMOS) 2 , Trondheim, Norway

Abstract

To accurately simulate wave-structure interaction based on fully nonlinear potential flow theory, a three-dimensional (3 D) high-order immersed-boundary adaptive harmonic polynomial cell (IB-AHPC) method is proposed. Both the free surface and body surface are immersed in background octree cells that are adaptively refined near the boundaries of interest, thereby dramatically reducing computational costs without loss of accuracy. We also propose an easy-to-implement IB strategy to deal with possible instabilities in the time-domain solution arising from the intersection of Dirichlet–Neumann boundaries. For a linearized problem of wave-wall interaction, a matrix-based stability analysis is performed, providing mathematical support for the robustness of the proposed IB strategy. In contrast to the two-dimensional HPC method, compressed cells are found to offer superior stability compared to stretched cells in the vertical direction, while equal mesh aspect ratio in the horizontal plane is superior. Cubic octree cells are, however, still preferred in practice. The free surface is primarily described by a set of massless background wave markers; however, to address the challenges of IB methods in tracking the free surface evolution near the structure, additional body-fitted wave markers are introduced close to the waterline. The information exchange between these two sets of wave markers is realized by radial basis function (RBF) interpolation. While standard RBF schemes have grid-size-dependent filtering performance, we propose a normalized RBF scheme, which is then optimized in terms of the number of neighboring nodes, a smoothing coefficient and the basis functions. Excellent accuracy properties of the proposed 3 D IB-AHPC method are demonstrated by studying fully nonlinear wave propagation. The method is further applied to study relevant fully nonlinear wave-structure interaction problems, including sloshing in 3 D rectangular tanks and wave diffraction of a bottom-mounted cylinder in regular waves. Satisfactory agreement is demonstrated with existing experimental and numerical results, suggesting that the proposed 3 D IB-AHPC method is a promising potential-flow method in marine hydrodynamics.

Funder

Chinese Scholarship Council

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3