A Comparative Numerical Analysis of Cold Plates for Thermal Management of Chips With Hotspots

Author:

Farahikia Mahdi1,Wang Ping-Chuan1,Reyes Louis2,Krumholtz Matthew2

Affiliation:

1. Division of Engineering Programs, SUNY New Platz , 1 Hawk Drive Room, New Paltz, NY 12561

2. Division of Engineering Programs, SUNY New Platz , 1 Hawk Drive, New Paltz, NY 12561

Abstract

Abstract Thermal and hydraulic performances of seven water-cooled minichannel cold plates with different internal structures are compared using numerical analysis. Recent increasing demands for high-performance computing have led to serious challenges in the thermal management of electronic devices. In addition to dangerous on-chip temperatures, heterogeneous integration and local regions of elevated temperatures (hotspots) lead to nonuniform chip-level temperature distributions. As a result, the lifespan and reliability of electronic devices are adversely impacted. Due to the limitation of the air-cooled heat sinks, several new methods, such as liquid-cooled microchannel cold plates are developed to remedy these challenges. The objective of this work is to provide a comparative numerical study of the effectiveness of different minichannel cold plate internal structures in the thermal management of a chip with a nonuniform power map and a hotspot. Cold plate thermal resistance, on-chip temperature uniformity, and pump power were the metrics used for this comparison. For four coolant inlet flow rates within the laminar regime, it is seen that increasing the inlet flowrate enhances the thermal resistance of all cold plate designs while creating less uniformity in chip-level temperature distribution relative to the conventional straight microchannels. Concentrating pin fins on the hotspot showed a 7.2% reduction in thermal resistance, despite increasing temperature nonuniformity by about 7.6%. However, it is observed that hotspot-focused pin fins are more effective in lowering the chip's maximum temperature. Obtaining lower chip-level nonuniformity may be possible by modifying the inlet and outlet conditions of the cold plates.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3