Investigation of wavy microchannel ability on electronic devices cooling with the case study of choosing the most efficient microchannel pattern

Author:

Ghorbani Nima,Targhi Mohammad Zabetian,Heyhat Mohammad Mahdi,Alihosseini Yousef

Abstract

AbstractA numerical study was conducted to investigate the ability of wavy microchannels to damp the temperature fluctuations generates in electronic devices. Five wavy patterns are considered with the amplitude and wavelength in the ranges of 62.5 to 250 μm and 1250 to 5000 μm, respectively to study the effect of governing phenomena of flow within wavy patterns on thermal–hydraulic performance. The flow regime is laminar and the Reynolds number is in the range of 300 to 900, and a relatively high heat flux of 80 W/cm2 is applied to the microchannels substrate. Also, variable flux condition is studied for heat fluxes of 80, 120, 160, 200, and 240 W/cm2 and for the most efficient wavy and straight microchannels. Results showed that the geometries with larger amplitude to wavelength ratio have a lower radius of curvature and larger Dean number, and as a result of transverse flow (secondary flow) amplification, they have enhanced heat transfer. Also, by comparing the ratio of the transverse velocity components to the axial component, it was found that by decreasing the radius of curvature and increasing the Dean number, transverse velocity increases, which intensifies the heat transfer between the wall and the fluid. The appraisement of the performance evaluation criterion (PEC) illustrates that the wavy case with an amplitude of 250 μm and wavelength of 2500 μm is the best geometry from the thermal–hydraulic point of view in the studied range. Finally, with variable flux condition, the wavy microchannel has responded well to the temperature increase and has created a much more uniform surface temperature compared to straight pattern. The proposed wavy pattern ensures that there are no hotspots which could damage the electronic chip. Presented wavy patterns can be used in heat sinks heat transfer enhancement to allow the chip to run in higher heat fluxes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3