Experimental Study of Ion Current Signals and Characteristics in an Internal Combustion Rankine Cycle Engine Based on Water Injection

Author:

Kang Zhe1,Wu Zhijun1,Fu Lezhong1,Deng Jun1,Hu Zongjie1,Li Liguang2

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China e-mail:

2. School of Automotive Studies, Chinesish-Deutsches Hochschulkolleg, Tongji University, Shanghai 201804, China e-mail:

Abstract

The internal combustion Rankine cycle (ICRC) engine utilizes pure oxygen as the oxidant instead of air during combustion to prevent the generation of nitrogen oxide emissions and lower the cost of CO2 recovery. To control combustion intensity and increase efficiency, water injection technology is implemented as it can increase the in-cylinder working fluid during combustion process. To further enhance the system thermal efficiency, the injected water is heated using coolant and waste heat before being directly injected into combustion chamber. The main challenge of controlling the ICRC engine is the interaction between water injection process and combustion stability. Ion current detection provides a potential solution of real-time detection of in-cylinder combustion status and water injection process simultaneously. In this paper, the characteristics of ion current signal in an ICRC engine were studied. The results indicate the ion current signal is primarily affected by the combination of trapped water vapor injected in the last cycle and in-cylinder combustion intensity. The water vapor contributes to the ionization reactions, which lead to enhanced ion current signals under water cycle. The ion current signal is capable of reflecting the operating conditions of the in-cylinder water injector. The phase of the ion current peak value has a linear relation as the water injection timing is delayed, and ion current detection technology has the potential to detect the combustion phase under different engine loads in an internal combustion Rankine cycle engine.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3