Thermodynamic Analysis of In-Cylinder Steam Assist Technology within an Internal Combustion Engine

Author:

Wu JingtaoORCID,Kang ZheORCID,Wu Zhijun

Abstract

For the requirements of rigorous CO2 and emissions regulations, steam assist technology is an effective method for thermal efficiency enhancement. However, few studies apply steam assist technology in modern internal combustion engines. Stimulated by its application prospects, the present study proposes a thermodynamic analysis on the in-cylinder steam assist technology. An ideal engine thermodynamic model combined with a heat exchanger model is established. Some critical parameters, such as steam injection temperature, injection pressure and intake pressure, are calculated under different steam injection masses. The thermal efficiency boundaries are also analyzed at different compression ratios to investigate the maximum potential thermal efficiency of the technology. The analysis shows that the in-cylinder steam-assisted cycle has the potential to increase engine efficiency considerably. Both steam injection temperature and injection mass improve thermal efficiency. Considering the energy trade-off relationship between steam and exhaust gas, the maximum gain in thermal efficiency achieved with the cycle is 14.5% at a compression ratio of 10. The optimum thermal efficiency can be increased from 54.0% to 59.71% by increasing the compression ratio from 10 to 16. The mechanism lies in the specific heat ratio enhancement from a thermodynamic perspective, which improves the thermal-heat conversion efficiency. The results provide considerable guidance for the future experimental and numerical studies of in-cylinder steam assist technology into modern engines.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Internal combustion engines: Progress and prospects

2. CO2 and Greenhouse Gas Emissions. Our World Datahttps://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

3. Fuel Consumption Evaluation Methods and Targets for Passenger Cars,2019

4. Real Driving Emissions Regulation. European Methodology to Fine Tune the EU Real Driving Emissions Data Evaluation Method;Zardini,2020

5. IJER editorial: The future of the internal combustion engine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3