A Bird-Inspired Perching Landing Gear System1

Author:

Nadan Paul M.1,Anthony Tatiana M.1,Michael Duncan M.1,Pflueger Jeffrey B.1,Sethi Manik S.1,Shimazu Kelli N.1,Tieu Mindy1,Lee Christopher L.1

Affiliation:

1. Olin College of Engineering, 1000 Olin Way, Needham, MA 02492

Abstract

Abstract The design, modeling, simulation, and testing of a landing gear system that enables a UAV to perch on an object or surface is presented here. The working principle of the landing gear is inspired by the anatomy of birds that grasp and perch as tendons in their legs and feet are tensioned. In a similar fashion, as the UAV sets down on a structure, its weight tensions a cable which actuates opposing, flexible, multi-segment feet to enclose the target. To analyze the grasping capability of the design, a hybrid empirical–computational model is developed that can be used to simulate the kinematics of the system as it grasps objects of various cross-sectional shapes and sizes. The model relates the curvature of the feet to the displacement and tension of the cable tendon. These quantities are then related to the weight of the UAV through the leg geometry. It also evaluates enclosure and calculates contact forces to quantitatively characterize the grasp. Results demonstrate how the model can be used by designers to determine how a UAV can perch upon a structure of a given shape and size. If perched, the minimum weight required to maintain its position is calculated. A prototype system was fabricated, analyzed, and tested on a radio-controlled hexacopter. Experiments show that the landing gear enables the hexacopter to land, perch, and takeoff from a variety of objects. Finally, we begin to investigate the scalability of the concept with a smaller, lighter design.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Computational Design of a Bird-Inspired Perching Landing Gear Mechanism;Nadan,2018

2. Demonstrations of Bio-Inspired Perching Landing Gear for UAV’s;Tieu,2016

3. Learning From Nature How to Land Aerial Robots;Kovac;Science,2016

4. Design and Perching Experiments of Bird-Like Remote Controlled Planes;Robertson,2013

5. Biologically Inspired Legs for UAV Perched Landing;Nagendran;IEEE Aerosp. Electron. Syst. Mag.,2012

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3