Viscoelastic Testing Methodologies for Tissue Engineered Blood Vessels

Author:

Berglund Joseph D.1,Nerem Robert M.2,Sambanis Athanassios31

Affiliation:

1. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Georgia Tech-Emory Center for the Engineering of Living Tissues, Atlanta, GA 30332

2. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332; School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Georgia Tech-Emory Center for the Engineering of Living Tissues, Atlanta, GA 30332

3. Fax (404) 894-2866

Abstract

In order to function in vivo, tissue engineered blood vessels (TEBVs) must encumber pulsatile blood flow and withstand hemodynamic pressures for long periods of time. To date TEBV mechanical assessment has typically relied on single time point burst and/or uniaxial tensile testing to gauge the strengths of the constructs. This study extends this analysis to include creep and stepwise stress relaxation viscoelastic testing methodologies. TEBV models exhibiting diverse mechanical behaviors as a result of different architectures ranging from reconstituted collagen gels to hybrid constructs reinforced with either untreated or glutaraldhyde-crosslinked collagen supports were evaluated after 8 and 23 days of in vitro culturing. Data were modeled using three and four-parameter linear viscoelastic mathematical representations and compared to porcine carotid arteries. While glutaraldhyde-treated hybrid TEBVs exhibited the largest overall strengths and toughness, uncrosslinked hybrid samples exhibited time-dependent behaviors most similar to native arteries. These findings emphasize the importance of viscoelastic characterization when evaluating the mechanical performance of TEBVs. Limits of testing methods and modeling systems are presented and discussed.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3