Empirical Model Decomposition Based Time-Frequency Analysis for the Effective Detection of Tool Breakage

Author:

Peng Yonghong1

Affiliation:

1. Department of Computing, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK

Abstract

Extensive research has been performed to investigate effective techniques, including advanced sensors and new monitoring methods, to develop reliable condition monitoring systems for industrial applications. One promising approach to develop effective monitoring methods is the application of time-frequency analysis techniques to extract the crucial characteristics of the sensor signals. This paper investigates the effectiveness of a new time-frequency analysis method based on Empirical Model Decomposition and Hilbert transform for analyzing the nonstationary cutting force signal of the machining process. The advantage of EMD is its ability to adaptively decompose an arbitrary complicated time series into a set of components, called intrinsic mode functions (IMFs), which has particular physical meaning. By decomposing the time series into IMFs, it is flexible to perform the Hilbert transform to calculate the instantaneous frequencies and to generate effective time-frequency distributions called Hilbert spectra. Two effective approaches have been proposed in this paper for the effective detection of tool breakage. One approach is to identify the tool breakage in the Hilbert spectrum, and the other is to detect the tool breakage by means of the energies of the characteristic IMFs associated with characteristic frequencies of the milling process. The effectiveness of the proposed methods has been demonstrated by considerable experimental results. Experimental results show that (1) the relative significance of the energies associated with the characteristic frequencies of milling process in the Hilbert spectra indicates effectively the occurrence of tool breakage; (2) the IMFs are able to adaptively separate the characteristic frequencies. When tool breakage occurs the energies of the associated characteristic IMFs change in opposite directions, which is different from the effect of changes of the cutting conditions e.g. the depth of cut and spindle speed. Consequently, the proposed approach is not only able to effectively capture the significant information reflecting the tool condition, but also reduces the sensitivity to the effect of various uncertainties, and thus has good potential for industrial applications.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference29 articles.

1. The Detection of Tool Breakage in Milling Operations;Altintas;J. Eng. Ind.

2. In-Process Detection of Tool Failure in Milling Using Cutting Force Models;Altintas;J. Eng. Ind.

3. A Sensor for the Detection of Tool Breakage in NC Milling;Tarng;J. Mater. Process. Technol.

4. Fuzzy-Nets In-Process (FNIP) Systems for Tool Breakage Detection in End Milling Operations;Chen;Int. J. Mach. Tools Manuf.

5. Tool Breakage Detection System Using an Accelerometer Sensor;Chen;Acta Photonica Sin.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3