Modulation signal bispectrum analysis of motor current signals for online monitoring of turning conditions

Author:

Zou Zhexiang12ORCID,Li Chun12ORCID,Shen Guoji3,Li Dongqin1,Gu Fengshou2ORCID,Ball Andrew David2

Affiliation:

1. School of Industrial Automation, Beijing Institute of Technology, Zhuhai, China

2. Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, UK

3. College of Intelligence Science and Technology, National University of Defense Technology, Zhuhai, Guangdong, China

Abstract

Maintaining exceptional product quality and boosting processing efficiency requires precise evaluation of various aspects of the turning process, including the cutting depth, feed rate, and size of the workpiece. This article presents a novel approach for observing the turning process state using modulation signal bispectrum (MSB) and motor current signals. A nonlinear model was established that clarifies the load torque oscillations during turning, which in turn affects the amplitude and phase modulation of the motor stator current. Random noise can be efficiently minimized using the MSB algorithm, allowing the extraction of the current-modulation characteristic sideband phase and amplitude from the collected current signal. This technique enables clear representation and enhanced monitoring of load torque changes throughout the turning process. The proposed method was validated via mathematical simulations and universal lathe tests, with the results indicating that the MSB phase and amplitude values effectively capture both dynamic and static torque alterations during the turning operation, making this approach a valuable tool for overseeing the turning process.

Funder

Guangdong Basic and Applied Basic Research Fund Offshore Wind Power SchemeGeneral Project

Open Fund Project of Key Laboratory of Science and Technology on Integrated Logistics Support

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3