A Gouge-Free Tool Axis Reorientation Method for Kinematics Compliant Avoidance of Singularity in 5-Axis Machining

Author:

Sun Shuoxue1,Sun Yuwen2,Lee Yuan-Shin3

Affiliation:

1. Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education,Dalian University of Technology,Dalian 116024, Chinae-mail: shuoxue_sun@163.com

2. Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education,Dalian University of Technology,Dalian 116024, Chinae-mail: xiands@dlut.edu.cn

3. Department of Industrial and Systems Engineering,North Carolina State University,Raleigh, NC 27695e-mail: yslee@ncsu.edu

Abstract

Abstract When a cutter traverses a region local to the singularity in 5-axis machining, the stability of machine tool motion may be violated and inevitably lead to a reduction in machining quality and accuracy. In this paper, the underlying cause of the singular machine behaviors is first investigated by differentiating tool path motions, on the basis of the tool path motion expressions in part and machine coordinate systems. A further investigation indicates abrupt kinematic changes to be inevitable when the rotary axes approach a singularity. To eliminate such possible singular risks in 5-axis machining, a local tool path modification method is proposed by adjusting the two rotary axes out of a singular configuration. The critical kinematics smoothing and the consequent gouging concerns resulting from reorientation are comprehensively incorporated in the process of singularity avoidance, by means of a novel tool orientation optimization model. Specifically, the algorithm starts with the determination of an appropriate adjustment range in a simple yet effective manner, and then the primary rotary axis is adjusted in a constrained region away from zero, so as to avoid singularity. After that, the second rotary axis is accordingly adjusted, with no gouging requirements being violated. In this way, singularity problems in 5-axis machining are solved, and both the machine axes kinematics and surface gouging errors are under control. Machining simulation and laboratory experiments were conducted to validate the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3