Tribological Studies of Ion-Implanted Steel Constituents Using an Oscillating Pin-on-Disk Wear Tester

Author:

Wei R.1,Wilbur P. J.1,Sampath W. S.1,Williamson D. L.2,Qu Yi2,Wang Li2

Affiliation:

1. Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523

2. Department of Physics, Colorado School of Mines, Golden, Colorado 80401

Abstract

Wear tests of ferrite (pure α-Fe) and austenite (AISI 304 stainless steel) implanted with nitrogen have been conducted using a unique oscillating pin-on-disk test machine. The results show that nitrogen implantation at elevated temperatures to high doses dramatically improves the adhesive wear resistance of ferrite and the critical load at which the wear mechanism changes from mild to severe adhesive wear for austenite. The wear resistance of nitrogen implanted ferrite is determined by the nitride formed. Ranked from most to least wear resistant the nitrides observed are γ’-Fe4N, ε-Fe3N, and ζ-Fe2N. No evidence of nitride break-up and attendant nitrogen migration during wear testing is found. Nitrogen does diffuse into both ferrite and austenite rapidly when they are implanted at an elevated temperature and this enhances their wear resistances.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3