Influence of Surface Sputtering during High-Intensity, Hot Ion Implantation on Deep Alloying of Martensitic Stainless Steel

Author:

Ryabchikov Alexander1,Korneva Olga1,Ivanova Anna1,Dektyarev Sergey1ORCID,Vakhrushev Dimitriy1,Gurulev Alexander1

Affiliation:

1. Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia

Abstract

This article is devoted to the study of the effect of ion sputtering on the alloy surface, using the example of martensitic stainless steel AISI 420 with ultrahigh-dose, high-intensity nitrogen ion implantation on the efficiency of accumulation and transformation of the depth distribution of dopants. Some patterns of change in the depth of ion doping depending on the target temperature in the range from 400 to 650 °C, current density from 55 to 250 mA/cm2, and ion fluence up to 4.5 × 1021 ion/cm2 are studied. It has been experimentally established that a decrease in the ion sputtering coefficient of the surface due to a decrease in the energy of nitrogen ions from 1600 to 350 eV, while maintaining the ion current density, ion irradiation fluence and temperature mode of target irradiation increases the ion-doped layer depth by more than three times from 25 μm to 65 µm. The efficient diffusion coefficient at an ion doping depth of 65 μm is many times greater than the data obtained when stainless steel is nitrided with an ion flux with a current density of about 2 mA/cm2.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3