Analytical Prediction for Free Response of Rotationally Ring-Shaped Periodic Structures

Author:

Zhang Dongsheng1,Wang Shiyu12,Liu Jianping1

Affiliation:

1. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China

2. Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300072, China e-mail:

Abstract

The in-plane wave motion is analytically examined to address the stationary deflection, natural frequency splitting, and mode contamination of the rotationally ring-shaped periodic structures (RRPS). The governing equation is developed by the Hamilton's principle where the structure is modeled as a thin ring with equally-spaced particles, and the centrifugal effect is included. The free responses are captured by the perturbation method and determined as closed-form expressions. The results imply that the response of stationary RRPS is characterized as standing wave, and the natural frequencies can split when the wave number n and particle number N satisfying 2n/N = int. Also the splitting behavior is determined by the relative angle between the particle and wave antinode. The coefficients of the mode contamination are also obtained. For rotating RRPS, the invariant deflections due to the centrifugal force are estimated at different rotating speeds. It is found that, for certain waves satisfying 2n/N = int, the natural frequency exceeds that of the corresponding smooth ring at the critical speed, and furthermore, the critical speed of the backward traveling wave is lower than that of the forward one. The contamination coefficients of the two kinds of waves are also obtained and they have different magnitudes. All results verify that the splitting and contamination can be determined by the relationship among the mode order, wave number, particle number, and relative position between the particle and antinode. Numerical examples and comparisons with the existing results in the literature are presented.

Publisher

ASME International

Subject

General Engineering

Reference34 articles.

1. Frequency Tuning of a Disk Resonator Gyro Via Mass Matrix Perturbation;ASME J. Dyn. Syst. Meas. Control,2009

2. Parametric Instability of a Circular Ring Subjected to Moving Springs;J. Sound Vib.,2006

3. On the Vibration of Bolted Plate and Flange Assemblies;ASME J. Vib. Acoust.,1994

4. Spatial Modulation of Repeated Vibration Modes in Rotationally Periodic Structures;ASME J. Vib. Acoust.,2000

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3