Vibration Instability of a Rotor in Axial-Field Permanent Magnet Motors with a Foundation Movement

Author:

Xia Chunhua12ORCID,Wang Shiyu12ORCID,Wang Jixiang12ORCID,Wei Zhenhang12ORCID

Affiliation:

1. School of Mechanical Engineering, Tianjin University, Tianjin 300350, P. R. China

2. Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300072, P. R. China

Abstract

This paper investigates the effects of a foundation movement on the vibration instability of axial-field permanent magnet motors (AFPMM). Different from previous studies focusing on the effects of the rotor’s rotation on its vibration instability, this paper introduces a revolution around a space axis as the foundation movement and investigates its effect on the vibration characteristics of the rotor. For an annular rotor with this foundation movement and a rotation around an axis passing through its own geometrical center, a dynamic model is established in this paper. Magnet-field-synchronous frame is introduced to describe the out-of-plane displacement. Hamilton’s principle and Galerkin method are involved to obtain dynamic mode. Closed-form expressions of eigenvalues and the boundaries of flutter and divergent instabilities are determined. The analytical results claim that the instabilities can be suppressed. Particularly, the divergent instabilities can even be eliminated by adjusting combinations of parameters. To verify the results, the stability analyses and numerical calculations regarding the revolution are given for a sample AFPMM revolving around a space axis at different speeds. Based on these analytical boundaries, the unstable regions of a sample motor with different parameter combinations are plotted in terms of foundation movement, which can be used to suppress the vibration instabilities with the design of parameters such as rotation speed, web thickness, magnetization thickness, air-gap length and remanence. Six states of instabilities are summarized as a guidance to determine the range of the stable operation of the motor.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3