Support Vector Regression for Optimal Robotic Force Control Assembly

Author:

Li Binbin1,Chen Heping2,Jin Tongdan2

Affiliation:

1. Department of CSE, Texas A&M University, College Station, TX 77843

2. Ingram School of Engineering, Texas State University, San Marcos, TX 78666

Abstract

Abstract Advanced industrial robotic assembly requires the process parameters to be tuned to achieve high efficiency: short assembly cycle (AC) time and high first-time throughput (FTT) rate. This task is usually undertaken offline because of the difficulties in real-time modeling and the lack of efficient algorithms. This paper proposes a support vector regression (SVR)-enabled method to optimize the assembly process parameters without interrupting the normal production process. To reduce the risk of obtaining a local minimum, we consider the trade-off between exploration and exploitation and propose an adaptive optimization process to balance the production processes and the optimization outcome. The proposed methods have been verified using a typical peg-in-hole robotic assembly process, and the results are compared with design of experiment (DOE) methods and genetic algorithm (GA) method in terms of efficiency and accuracy. The experimental results show that our methods are able to maintain the high FTT rate when it drops below 99%, shorten the average AC time by 3.4%, and reduce the number of assembly trials to find the optimized process parameters by 99.6%.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3