Nine Degree-of-Freedom Kinematic Modeling of the Upper-Limb Complex for Constrained Workspace Evaluation

Author:

DeBoon Brayden1,Foley Ryan C. A.2,Nokleby Scott1,La Delfa Nicholas J.2,Rossa Carlos1

Affiliation:

1. Faculty of Applied Science and Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

2. Faculty of Health Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

Abstract

Abstract The design of rehabilitation devices for patients experiencing musculoskeletal disorders (MSDs) requires a great deal of attention. This article aims to develop a comprehensive model of the upper-limb complex to guide the design of robotic rehabilitation devices that prioritize patient safety, while targeting effective rehabilitative treatment. A 9 degree-of-freedom kinematic model of the upper-limb complex is derived to assess the workspace of a constrained arm as an evaluation method of such devices. Through a novel differential inverse kinematic method accounting for constraints on all joints1820, the model determines the workspaces in which a patient is able to perform rehabilitative tasks and those regions where the patient needs assistance due to joint range limitations resulting from an MSD. Constraints are imposed on each joint by mapping the joint angles to saturation functions, whose joint-space derivative near the physical limitation angles approaches zero. The model Jacobian is reevaluated based on the nonlinearly mapped joint angles, providing a means of compensating for redundancy while guaranteeing feasible inverse kinematic solutions. The method is validated in three scenarios with different constraints on the elbow and palm orientations. By measuring the lengths of arm segments and the range of motion for each joint, the total workspace of a patient experiencing an upper-limb MSD can be compared to a preinjured state. This method determines the locations in which a rehabilitation device must provide assistance to facilitate movement within reachable space that is limited by any joint restrictions resulting from MSDs.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3