The GOGIRA System: An Innovative Method for Landslides Digital Mapping

Author:

Licata MicheleORCID,Fubelli GiandomenicoORCID

Abstract

Landslide mapping techniques have had many improvements in recent decades, the main field of development has been on traditional cartographic techniques and to a lesser extent on indirect numerical cartography. As for Direct Numerical Cartography (DNC), only a few improvements have been made due to the complexity and economic cost of the new technologies. To meet this lack in DNC techniques GOGIRA (Ground Operative-system for GIS Input Remote-data Acquisition), a new system following the GIS (Geographic Information System) scheme, was developed. It is a suite of hardware and software tools, algorithms, and procedures for easier and cheaper DNC. Initial tests conducted on the Quincinetto landslide system (north-western Italy) demonstrated good results in terms of morphometric coherence and precision. A geomorphological map made with GOGIRA was compared with a highly detailed geomorphological map developed with modern tested methods. In conclusion GOGIRA proved to be a valid system for geomorphological DNC when applied to a complex landslide system, considering the early stage of developing results for linear and point mapping was excellent, as for polygonal elements more studies must be conducted to improve accuracy and precision.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference58 articles.

1. Erla¨uterungen Zu Lief. 1, Morphologie Des Messtischblattes Stadtremba (1:25,000);Passarge;Mitt. Geogr. Gesell.,1914

2. Geomorphological Mapping: Methods and Applications;Smith,2011

3. Terrain Analysis and Classification Using Aerial Photographs;van Zuidam,1979

4. Geographic Information System (GIS): Definition, Development, Applications & Components. Jalpaiguri https://www.researchgate.net/publication/340182760_Geographic_Information_System_GIS_Definition_Development_Applications_Components

5. GIS Databases and NoSQL Databases;Yue,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of Block Instability at the Toe of a Slowly Deforming Rock Slope;Rock Mechanics and Rock Engineering;2023-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3