Design and Performance Analysis of Wavy Nonrotating Pneumatic Soft Actuator

Author:

Lv Zhongming1,Xiao Feiyun1,Chen Baoliang1,Dong Ruonan2,Liu Zhengshi3,Wang Yong1

Affiliation:

1. Hefei University of Technology School of Mechanical Engineering, and Intelligent Interconnected Systems Laboratory of Anhui Province, , Hefei 230009 , China

2. Imperial College London The Department of Bioengineering, and the Royal British Legion Centre for Blast Injury Studies, , London , UK

3. Hefei University of Technology School of Mechanical Engineering, , Hefei 230009 , China

Abstract

Abstract Soft robots can accomplish hand rehabilitation training to ensure better safety and compliance for hand rehabilitation. In this study, a wavy nonrotating soft actuator structure was proposed for hand rehabilitation, and an axial stiffener was added to the main structure of the actuator according to the function of the bamboo fiber. A physical model of the actuator was fabricated using a multistep casting molding method, and the performance of the designed soft actuator was tested experimentally. The results showed that the bending angle and contact force gradually increased with increasing pressure. The average maximum bending angle and contact force can reach 286 ± 14.3 deg and 1.04 ± 0.051 N, with a pressure of 72 kPa. Meanwhile, the bending torques of the soft actuator at each joint of the finger were tested, to verify that it can meet the needs of soft actuators for hand applications. Furthermore, the load lifting of the soft actuator with axial stiffeners can increase by 6 mm on average compared with a soft actuator without axial stiffeners under negative pressure. In conclusion, the pneumatic soft actuator can produce two different motion functions under the action of one cavity. In addition, a soft actuator with an axial stiffener can improve the load capacity under negative pressure. By assembling the actuators, a three-finger gripper was manufactured. The gripper could grasp and lift objects. Therefore, this work provides a new route for the development of pneumatic soft actuators and soft robots, which has efficient driving.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3