Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors

Author:

She Yu1,Li Chang2,Cleary Jonathon1,Su Hai-Jun3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 e-mail:

2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China e-mail:

3. Mem. ASME Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 e-mail:

Abstract

This paper details the design and fabrication process of a fully integrated soft humanoid robotic hand with five finger that integrate an embedded shape memory alloy (SMA) actuator and a piezoelectric transducer (PZT) flexure sensor. Several challenges including precise control of the SMA actuator, improving power efficiency, and reducing actuation current and response time have been addressed. First, a Ni-Ti SMA strip is pretrained to a circular shape. Second, it is wrapped with a Ni-Cr resistance wire that is coated with thermally conductive and electrically isolating material. This design significantly reduces actuation current, improves circuit efficiency, and hence reduces response time and increases power efficiency. Third, an antagonistic SMA strip is used to improve the shape recovery rate. Fourth, the SMA actuator, the recovery SMA strip, and a flexure sensor are inserted into a 3D printed mold which is filled with silicon rubber materials. The flexure sensor feeds back the finger shape for precise control. Fifth, a demolding process yields a fully integrated multifunctional soft robotic finger. We also fabricated a hand assembled with five fingers and a palm. We measured its performance and specifications with experiments. We demonstrated its capability of grasping various kinds of regular or irregular objects. The soft robotic hand is very robust and has a large compliance, which makes it ideal for use in an unstructured environment. It is inherently safe to human operators as it can withstand large impacts and unintended contacts without causing any injury to human operators or damage to the environment.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3