Application of Feature-Learning Methods Toward Product Usage Context Identification and Comfort Prediction

Author:

Ghosh Dipanjan1,Olewnik Andrew2,Lewis Kemper3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, 805 Furnas Hall, University at Buffalo—SUNY, Buffalo, NY 14260 e-mail:

2. Mem. ASME Department of Mechanical and Aerospace Engineering, 412 Bonner Hall, University at Buffalo—SUNY, Buffalo, NY 14260 e-mail:

3. Professor Fellow ASME Department of Mechanical and Aerospace Engineering, 208 Bell Hall, University at Buffalo—SUNY, Buffalo, NY 14260 e-mail:

Abstract

Usage context is considered a critical driving factor for customers' product choices. In addition, physical use of a product (i.e., user-product interaction) dictates a number of customer perceptions (e.g., level of comfort). In the emerging internet of things (IoT), this work hypothesizes that it is possible to understand product usage and level of comfort while it is “in-use” by capturing the user-product interaction data. Mining this data to understand both the usage context and the comfort of the user adds new capabilities to product design. There has been tremendous progress in the field of data analytics, but the application in product design is still nascent. In this work, application of feature-learning methods for the identification of product usage context and level of comfort is demonstrated, where usage context is limited to the activity of the user. A novel generic architecture using foundations in convolutional neural network (CNN) is developed and applied to a walking activity classification using smartphone accelerometer data. Results are compared with feature-based machine learning algorithms (neural network and support vector machines (SVM)) and demonstrate the benefits of using the feature-learning methods over the feature-based machine-learning algorithms. To demonstrate the generic nature of the architecture, an application toward comfort level prediction is presented using force sensor data from a sensor-integrated shoe.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3