Assessing Impact of Sensors and Feature Selection in Smart-Insole-Based Human Activity Recognition

Author:

D’Arco LuigiORCID,Wang HaiyingORCID,Zheng HuiruORCID

Abstract

Human Activity Recognition (HAR) is increasingly used in a variety of applications, including health care, fitness tracking, and rehabilitation. To reduce the impact on the user’s daily activities, wearable technologies have been advanced throughout the years. In this study, an improved smart insole-based HAR system is proposed. The impact of data segmentation, sensors used, and feature selection on HAR was fully investigated. The Support Vector Machine (SVM), a supervised learning algorithm, has been used to recognise six ambulation activities: downstairs, sit to stand, sitting, standing, upstairs, and walking. Considering the impact that data segmentation can have on the classification, the sliding window size was optimised, identifying the length of 10 s with 50% of overlap as the best performing. The inertial sensors and pressure sensors embedded into the smart insoles have been assessed to determine the importance that each one has in the classification. A feature selection technique has been applied to reduce the number of features from 272 to 227 to improve the robustness of the proposed system and to investigate the importance of features in the dataset. According to the findings, the inertial sensors are reliable for the recognition of dynamic activities, while pressure sensors are reliable for stationary activities; however, the highest accuracy (94.66%) was achieved by combining both types of sensors.

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3