A Study of the Use of Gyroscope Measurements in Wearable Fall Detection Systems

Author:

Casilari EduardoORCID,Álvarez-Marco Moisés,García-Lagos FranciscoORCID

Abstract

Due to the serious impact of falls on the quality of life of the elderly and on the economical sustainability of health systems, the study of new monitoring systems capable of automatically alerting about falls has gained much research interest during the last decade. In the field of Human Activity Recognition, Fall Detection Systems (FDSs) can be contemplated as pattern recognition architectures able to discriminate falls from ordinary Activities of Daily Living (ADLs). In this regard, the combined application of cellular communications and wearable devices that integrate inertial sensors offers a cost-efficient solution to track the user mobility almost ubiquitously. Inertial Measurement Units (IMUs) typically utilized for these architectures, embed an accelerometer and a gyroscope. This paper investigates if the use of the angular velocity (captured by the gyroscope) as an input feature of the movement classifier introduces any benefit with respect to the most common case in which the classification decision is uniquely based on the accelerometry signals. For this purpose, the work assesses the performance of a deep learning architecture (a convolutional neural network) which is optimized to differentiate falls from ADLs as a function of the raw data measured by the two inertial sensors (gyroscope and accelerometer). The system is evaluated against on a well-known public dataset with a high number of mobility traces (falls and ADL) measured from the movements of a wide group of experimental users.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3