Effects of Homogeneous–Heterogeneous Reactions and Convective Condition in Darcy–Forchheimer Flow of Carbon Nanotubes

Author:

Alshomrani Ali Saleh1,Ullah Malik Zaka2

Affiliation:

1. Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia e-mail:

2. Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

This paper presents Darcy–Forchheimer three-dimensional (3D) flow of water-based carbon nanotubes (CNTs) with heterogeneous–homogeneous reactions. A bi-directional linear extendable surface has been employed to create the flow. Flow in porous space is represented by Darcy–Forchheimer expression. Heat transfer mechanism is explored through convective heating. Equal diffusion coefficients are considered for both autocatalyst and reactants. Results for single-wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) have been presented and compared. The diminishment of partial differential framework into nonlinear ordinary differential framework is made through suitable transformations. Optimal homotopy scheme is used for arrangements development of governing flow problem. Optimal homotopic solution expressions for velocities and temperature are studied through plots by considering various estimations of physical variables. The skin friction coefficients and local Nusselt number are analyzed through plots. Our findings depict that the skin friction coefficients and local Nusselt number are enhanced for larger values of the nanoparticles volume fraction.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3