Darcy Forchheimer two-dimensional thin flow of Jeffrey nanofluid with heat generation/absorption and thermal radiation over a stretchable flat sheet

Author:

Jagadha Saravanan1,Rao Batina Madhusudhan2,Durgaprasad Putta3,Gopal Degavath4,Prakash Putta5,Kishan Naikoti6,Muthunagai Krishnan7

Affiliation:

1. Institute of Aeronautical Engineering, Dundigal, Hyderabad, T.S. 500043, India

2. Department of IT, Mathematics section, University of Technology and Applied Sciences, Muscat 324, Oman

3. Vellore Institute of Technology, Kelambakkam - Vandalur Rd, Rajan Nagar, Chennai 600127, India

4. Department of Mathematics, CMR Engineering College, Medchal, T.S. 501401, India

5. Mohan Babu University, Sree Vidyanikethan Sree Sainath Nagar, Andhra Pradesh, Tirupati 517102, India

6. Osmania University, Main road, Amberpet, Hyderabad, Telangana T.S. 500007, India

7. Vellore Institute of Technology, Kelambakkam - Vandalur Rd, Rajan Nagar, Chennai, Tamil Nadu 600127, India

Abstract

This work aims to study the combined effects of concentration and thermal radiation on a steady flow of Jeffrey nanofluid under the Darcy-Forchheimer relation over a flat nonlinear stretching sheet of variable thickness. A varying magnetic field influences normal to the flow movement is considered to strengthen the Jeffery nanofluid conductivity. However, a little effect of the magnetic Reynolds number is assumed to eliminate the impact of the magnetic field range. The higher-order nonlinear partial differential equations (PDEs) and convective boundary conditions are transformed into nonlinear ordinary differential equations (ODEs) by applying corresponding transformations. Then the ODEs are numerically solved with Runge-Kutta method via shooting technique. This process is applied for convergent relations of nanoparticle temperature, concentration, and velocity distributions. The influence of different fluid parameters like thermophoresis, melting param-eter, Deborah number, chemical reaction parameter, Brownian motion parameter, inertia parameter and Darcy number on the flow profiles is explained through graphical analysis. Thermal radiation is emitted by accelerated charged particles, and the enhanced particle motion at higher temperatures causes a more significant discharge of radiation. Also, it was concluded that the heat generation parameter enhances the momentum boundary layer thickness and reduces the thermal and solutal boundary layer thickness over a Jeffrey nanofluid.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3