45 deg Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel

Author:

Taslim M. E.1,Lengkong A.1

Affiliation:

1. Department of Mechanical, Industrial, and Manufacturing Engineering, Northeastern University, Boston, MA 02115

Abstract

For high-blockage ribs with large heat transfer areas, commonly used in small gas turbine blades, the rib heat transfer is a significant portion of the overall heat transfer in the cooling passages. Three staggered 45 deg rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested in a square channel for pitch-to-height ratios of 5, 8.5, and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface-averaged heat transfer coefficients and friction factors for 45 deg ribs, and 90 deg ribs reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region were also compared. It was concluded that: (a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. (b) Except for two cases corresponding to the highest blockage ribs mounted at pitch-to-height ratios of 8.5 and 10 for which the heat transfer results of 45 deg ribs were very close to those of 90 deg ribs, 45 deg ribs produced higher heat transfer coefficients than 90 deg ribs. (c) At pitch-to-height ratios of 8.5 and 10, all 45 deg ribs produced lower friction factors than 90 deg ribs. However, when they were brought closer to each other (S/e = 5), they produced higher friction factors than 90 deg ribs. (d) Heat transfer coefficients for the two smaller rib geometries (e/Dh = 0.133 and 0.167) did not vary significantly with the pitch-to-height ratio in the range tested. However, the heat transfer coefficient for the high blockage rib geometry increased significantly as the ribs were brought closer to each other. (e) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients than those in the midstream position. (f) Rib thermal performance decreased with the rib blockage ratio. For both angles of attack, the smallest rib geometry in the midstream position and at a pitch-to-height ratio of 10 had the highest thermal performance, and the highest blockage rib in the furthest upstream position produced the lowest thermal performance.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3