Analytical Solution for Transient Thermal Behavior of Two Semisolids With Contact Resistance and Interfacial Heat Generation

Author:

Baker William P.1,Rutledge James L.2

Affiliation:

1. Department of Mathematics and Statistics, Air Force Institute of Technology, Wright-Patterson Air Force Base , OH 45433

2. Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright-Patterson Air Force Base , OH 45433

Abstract

Abstract The problem of two dissimilar semi-infinite solids at different initial temperatures brought into contact has a well-known simple analytical solution. In this work, this problem is reexamined with the additional simultaneous complications of both contact resistance and surface heat generation. While contact resistance is always present to some degree due to surface asperities or oxidation layers, heat generation at the contact interface can also occur in certain situations. These situations can occur in applications such as ultrasonic welding or arise in situations involving electromagnetic radiation passing through an optically transparent medium, but dissipating as heat at an interface with an opaque material that is in contact with the transparent material. In this paper, an analytical solution to the unsteady conduction problem is developed that accounts for both contact resistance and interfacial heat generation. The solution confirms that the initially warmer object rapidly decreases in temperature in the vicinity of the interface as heat flows into the cooler object and the heat generated at the interface preferentially flows to the cooler material. After a short time, however, the temperatures of both materials at the interface increase in temperature above even the initial temperature of the initially hotter material. An experiment was performed that verified the analytical solution.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3