Performance Analysis of a Phase Changing Material Based Thermocycler for Nucleic Acid Amplification

Author:

Indulakshmi B.1,Prasad Nikhil1,Kumar Ranjith S.1

Affiliation:

1. College of Engineering Thiruvananthapuram Micro/Nanofluidics Research Laboratory, Department of Mechanical Engineering, , Thiruvananthapuram, Kerala 695016 , India

Abstract

Abstract Modeling, simulation, and thermal performance analysis of a thermocycler for the continuous-flow polymerase chain reaction (CF-PCR), with a phase changing material (PCM)-laden annealing flow path, is presented. The incessant threat of microorganisms such as viruses, bacteria, and fungi has fostered effective, quick, and miniature detection devices in order to curtail the wide-spreading of infections. Microfluidics-based CF-PCR systems are compact and ideal for faster response. The thermal cycling process involves a sequential exposure of a given liquid sample to various temperature conditions when it is taken through the continuous-flow path. As a result, a prescribed periodic change of temperature suitable for deoxyribonucleic acid (DNA) amplification is achieved. A rapid temperature reduction and maintenance of isothermal conditions to facilitate the annealing phase of CF-PCR process by a PCM-assisted cooling is envisaged in the present study. Unsteady, two-dimensional, incompressible fluid flow, and internal convection heat transfer in a microchannel annealing path with melting of tetracosane (C24H50) boundary has been simulated using semi-implicit method for pressure linked equations-consistent (SIMPLEC) algorithm based finite volume solver. Solver validation is carried out against the experimental data on internal convection heat transfer in a rectangular microchannel. A detailed numerical study has been performed to assess the spatiotemporal heat transfer characteristics of internal convection in the microfluidic path when the flow triggers the melting of encapsulated PCM. A minimum sample flowrate with PCM encapsulation of less than 600 μm is found to be ideal for achieving desired thermal performance. The present study evidences the swift temperature reduction and management of isothermal conditions congenial for the annealing process in the CF-PCR system for various sample flowrates and PCM masses. The study offers valuable design input for the development of a microfluidic thermocycler for CF-PCR applications.

Funder

Kerala State Council for Science, Technology and Environment

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3