Which One Does Better Predict the Heating Value of Biomass?—Dry Based or As-Received Based Proximate Analysis Results?

Author:

Ozyuguran A.1,Haykiri-Acma H.1,Yaman S.1

Affiliation:

1. Chemical and Metallurgical Engineering Faculty, Department of Chemical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey e-mail:

Abstract

Thirty-nine different species of waste biomass materials that include woody or herbaceous resources as well as nut shells and juice pulps were used to develop empirical equations to predict the calorific value based on the proximate analysis results. Ten different linear/nonlinear equations that contain proximate analysis ingredients including or excluding the moisture content were tested by means of least-squares method to predict the HHV (higher heating value). Prediction performance of each equation was evaluated considering the experimental and the predicted values of HHV and the criteria of MAE (mean absolute error), AAE (average absolute error), and ABE (average bias error). It was concluded that the presence of moisture as a parameter improves the prediction performance of these equations. Also, the samples were classified into two subsets according to their fixed carbon (FC)/ash values and then the correlations were repeated for each subset. Both the full set of samples and the subsets showed a similar trend that the presence of moisture in equations enhances the prediction performance. Also, the FC content may be disregarded from the equation of the calorific value prediction when the FC/ash ratio is lower than a given value.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3