A Computationally Efficient Finite Element Framework to Simulate Additive Manufacturing Processes

Author:

Jayanath Shiyan1,Achuthan Ajit1

Affiliation:

1. Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, NY 13699 e-mail:

Abstract

Macroscale finite element (FE) models, with their ability to simulate additive manufacturing (AM) processes of metal parts and accurately predict residual stress distribution, are potentially powerful design tools. However, these simulations require enormous computational cost, even for a small part only a few orders larger than the melt pool size. The existing adaptive meshing techniques to reduce computational cost substantially by selectively coarsening are not well suited for AM process simulations due to the continuous modification of model geometry as material is added to the system. To address this limitation, a new FE framework is developed. The new FE framework is based on introducing updated discretized geometries at regular intervals during the simulation process, allowing greater flexibility to control the degree of mesh coarsening than a technique based on element merging recently reported in the literature. The new framework is evaluated by simulating direct metal deposition (DMD) of a thin-walled rectangular and a thin-walled cylindrical part, and comparing the computational speed and predicted results with those predicted by simulations using the conventional framework. The comparison shows excellent agreement in the predicted stress and plastic strain fields, with substantial savings in the simulation time. The method is then validated by comparing the predicted residual elastic strain with that measured experimentally by neutron diffraction of the thin-walled rectangular part. Finally, the new framework's capability to substantially reduce the simulation time for large-scale AM parts is demonstrated by simulating a one-half foot thin-walled cylindrical part.

Funder

New York State Energy Research and Development Authority

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3