Simulation Study on Temperature and Stress Fields in Mg-Gd-Y-Zn-Zr Alloy during CMT Additive Manufacturing Process

Author:

Zhao Mingkun1,Zhao Zhanyong1ORCID,Du Wenbo2,Bai Peikang13,Huang Zhiquan4

Affiliation:

1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China

2. National Key Laboratory for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China

3. School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030602, China

4. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030602, China

Abstract

A new heat source combination, consisting of a uniform body heat source and a tilted double ellipsoidal heat source, has been developed for cold metal transfer (CMT) wire-arc additive manufacturing of Mg-Gd-Y-Zn-Zr alloy. Simulations were conducted to analyze the temperature field and stress distribution during the process. The optimal combination of feeding speed and welding speed was found to be 8 m/min and 8 mm/s, respectively, resulting in the lowest thermal accumulation and residual stress. Z-axis residual stress was identified as the main component of residual stress. Electron Backscatter Diffraction (EBSD) testing showed weak texture strength, and Kernel Average Misorientation (KAM) analysis revealed that the 1st layer had the highest residual stress, while the 11th layer had higher residual stress than the 6th layer. Microhardness in the 1st, 11th, and 6th layers varies due to residual stress impacts on dislocation density. Higher residual stress increases dislocation density, raising microhardness in components. The experimental results were highly consistent with the simulated results.

Funder

National Natural Science Foundation of China

Patent Transformation Special Plan Project of Shanxi

Natural Science Foundation of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3