Wire Arc Additive Manufacturing (WAAM) for Aluminum-Lithium Alloys: A Review

Author:

Rodríguez-González Paula1ORCID,Ruiz-Navas Elisa María1ORCID,Gordo Elena1ORCID

Affiliation:

1. Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos lll de Madrid, Avda. De la Universidad 30, 38911 Leganés, Spain

Abstract

Out of all the metal additive manufacturing (AM) techniques, the directed energy deposition (DED) technique, and particularly the wire-based one, are of great interest due to their rapid production. In addition, they are recognized as being the fastest technique capable of producing fully functional structural parts, near-net-shape products with complex geometry and almost unlimited size. There are several wire-based systems, such as plasma arc welding and laser melting deposition, depending on the heat source. The main drawback is the lack of commercially available wire; for instance, the absence of high-strength aluminum alloy wires. Therefore, this review covers conventional and innovative processes of wire production and includes a summary of the Al-Cu-Li alloys with the most industrial interest in order to foment and promote the selection of the most suitable wire compositions. The role of each alloying element is key for specific wire design in WAAM; this review describes the role of each element (typically strengthening by age hardening, solid solution and grain size reduction) with special attention to lithium. At the same time, the defects in the WAAM part limit its applicability. For this reason, all the defects related to the WAAM process, together with those related to the chemical composition of the alloy, are mentioned. Finally, future developments are summarized, encompassing the most suitable techniques for Al-Cu-Li alloys, such as PMC (pulse multicontrol) and CMT (cold metal transfer).

Funder

Regional Government of Madrid (Dra. Gral. Universidades e Investigación

Publisher

MDPI AG

Subject

General Materials Science

Reference114 articles.

1. (2012). Standard Terminology for Additive Manufacturing Technologies (Standard No. ASTM F2792-1).

2. Additive manufacturing: Technology, applications and research needs;Guo;Front. Mech. Eng.,2013

3. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium;Derekar;Mater. Sci. Technol.,2018

4. Challenges in Additive Manufacturing of High-Strength Aluminium Alloys and Current Developments in Hybrid Additive Manufacturing;Yardley;Int. J. Light. Mater. Manuf.,2020

5. Metal additive manufacturing in aircraft: Current application, opportunities and challenges;Zhang;IOP Conf. Series Mater. Sci. Eng.,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3