Particulate Emissions From Karanja Biodiesel Fueled Turbocharged CRDI Sports Utility Vehicle Engine

Author:

Gopal Gupta Jai1,Kumar Agarwal Avinash1,Aggarwal Suresh K.2

Affiliation:

1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India e-mail:

2. The Flow and Combustion Simulation Laboratory Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 e-mail:

Abstract

Biodiesel has emerged as one of the most promising alternative fuel to mineral diesel in last two decades globally. Lower blends of biodiesel emit fewer pollutants, while easing pressure on scarce petroleum resources, without sacrificing engine power output and fuel economy. However, diesel engines emit significant amount of particulate matter (PM), most of which are nanoparticles. Due to the adverse health impact of PM emitted by compression ignition (CI) engines; most recent emission legislations restrict the total number of particles emitted, in addition to PM mass emissions. Use of biodiesel leads to reduction in PM mass emissions; however, the particle size–numbers distribution has not been investigated thoroughly. In this paper, PM emission characteristics from Karanja biodiesel blends (KB20 and KB40) in a modern common rail direct injection (CRDI) engine used in a sports utility vehicle (SUV) with a maximum fuel injection pressure of 1600 bar have been reported. This study also explored comparative effect of varying engine speeds and loads on particulate size–number distribution, particle size–surface area distribution, and total particulate number concentration from biodiesel blends vis-à-vis baseline mineral diesel. This study showed that particulate number emissions from Karanja biodiesel blends were relatively higher than baseline mineral diesel.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference35 articles.

1. Experimental Study of the Performance and Emission Characteristics of Diesel Engine Using Direct and Indirect Injection Systems and Different Fuels;Fuel Process. Technol.,2011

2. The Comparison of Engine Performance and Exhaust Emission Characteristics of Sesame Oil–Diesel Fuel Mixture With Diesel Fuel in a Direct Injection Diesel Engine;Renewable Energy,2008

3. Effect of Fuel Injection Pressure on Diesel Particulate Size and Number Distribution in a CRDI Single Cylinder Research Engine;Fuel,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3