Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study

Author:

Awtar Shorya1,Shimotsu Kevin1,Sen Shiladitya1

Affiliation:

1. Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109

Abstract

Abstract Redundant constraints are generally avoided in mechanism design because they can lead to binding or loss in expected mobility. However, in certain distributed-compliance flexure mechanism geometries, this problem is mitigated by the phenomenon of elastic averaging. Elastic averaging is a design paradigm that, in contrast with exact constraint design principles, makes deliberate and effective use of redundant constraints to improve performance and robustness. The principle of elastic averaging and its advantages are illustrated in this paper by means of a three-beam parallelogram flexure mechanism, which represents an overconstrained geometry. In a lumped-compliance configuration, this mechanism is prone to binding in the presence of nominal manufacturing and assembly errors. However, with an increasing degree of distributed-compliance, the mechanism is shown to become more tolerant to such geometric imperfections. The nonlinear elastokinematic effect in the constituent beams is shown to play an important role in analytically predicting the consequences of overconstraint and provides a mathematical basis for elastic averaging. A generalized beam constraint model is used for these predictions so that varying degrees of distributed compliance are captured using a single geometric parameter. The closed-form analytical results are validated against finite element analysis, as well as experimental measurements.

Publisher

ASME International

Subject

Mechanical Engineering

Reference33 articles.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3