Performance Evaluation of a Pump-Assisted, Capillary Two-Phase Cooling Loop

Author:

Park Chanwoo1,Vallury Aparna2,Zuo Jon3

Affiliation:

1. Department of Mechanical Engineering, University of Nevada, Reno, NV 89557

2. IBM, Research Triangle Park, NC 27709

3. Advanced Cooling Technologies, Inc., Lancaster, PA 17601

Abstract

A hybrid (pump-assisted and capillary) two-phase loop (HTPL) is experimentally investigated to characterize its thermal performance under stepwise heat input conditions. An integration of mechanical pumping with capillary pumping is achieved by using planar evaporator(s) and a two-loop design separating liquid and vapor flows. The evaporator(s) use a sintered copper grooved wick bonded with a liquid screen artery. No active flow control of the mechanical pumping is required because of the autonomous capillary pumping due to the self-adjusting liquid menisci to variable heat inputs of the evaporators. Unlike other active two-phase cooling systems using liquid spray and microchannels, the HTPL facilitates a passive phase separation of liquid from vapor in the evaporator using capillary action, which results in a lower flow resistance of the single-phase flows than two-phase mixed flows in fluid transport lines. In this work, a newly developed planar form-factor evaporator with a boiling heat transfer area of 135.3 cm2 is used aiming for the power electronics with large rectangular-shaped heat sources. This paper presents the experimental results of the HTPLs with a single evaporator handling a single heat source and dual evaporators handling two separate heat sources, while using distilled water as the working fluid for both cases. For the single evaporator system, the temperature results show that the HTPL does not create a big temperature upset under a stepwise heat load with sudden power increases and decreases. The evaporator thermal resistance is measured to be as low as 0.5 K cm2/W for the maximum heat load of 4.0 kW. A cold-start behavior characterized by a big temperature fluctuation was observed at the low heat inputs around 500 W. The HTPL with dual evaporators shows a strong interaction between the evaporators under an asymmetric heat load of the total maximum heat input of 6.5 kW, where each evaporator follows a different heat input schedule. The temperatures of the dual-evaporator system follow the profile of the total heat input, while the individual heat inputs determine the relative level of the temperatures of the evaporators.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference16 articles.

1. High Power Thermal Management Issues in Space-Based Systems;Ponnappan

2. NASA Thermal Control Technologies for Robotic Spacecraft;Swanson;Appl. Therm. Eng.

3. Pool-Boiling CHF Enhancement by Modulated Porous Layer Coating: Theory and Experiment;Liter;Int. J. Heat Mass Transfer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3