Numerical Analysis of Wick-Type Two-Phase Mechanically Pumped Fluid Loop for Thermal Control of Electric Aircraft Motors
Author:
Chang Xinyu,
Fujita KojiORCID,
Nagai HirokiORCID
Abstract
The development of thermal control systems has become an important issue in next-generation electric aircraft design due to the increase in heat exhausted with electrification. In this paper, a wick-type two-phase mechanically pumped fluid loop system for future electric aircraft was proposed through the investigation of current two-phase flow cooling technology. Taking the experimental electric aircraft X-57 as an example, a wick-type two-phase mechanically pumped fluid loop with four evaporators for transporting 12 kW of waste heat within an 80 °C temperature limit was proposed and its feasibility was confirmed. A numerical model was constructed and validated to predict the operating characteristics of a two-phase mechanically pumped fluid loop. The optimal pump outputs under-even and uneven heat load conditions and was investigated for the first time by considering the vapor-liquid separation conditions in each flow path and the power consumption of the pump. Under the optimal pump output condition, the operating characteristics of the wick-type two-phase mechanically pumped fluid loop system were calculated. The calculation results indicate that the proposed wick-type two-phase mechanically pumped fluid loop is suitable as the thermal control system for an X-57 electric aircraft motor, as the calculation results satisfied the operational requirements of the motor.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference48 articles.
1. Flight Demonstration of Electric Propulsion System Technology for Aircraft Application;Nishizawa;Aeronaut. Space Sci. Jpn.,2017
2. Electric VTOL Configurations Comparison
3. Subsonic Ultra Green Aircraft Research: Phase II—Volume II—Hybrid Electric Design Exploration;Bradley,2019
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献