Nonfragile H∞ Control of Delayed Active Suspension Systems in Finite Frequency Under Nonstationary Running

Author:

Li Wenfeng1,Xie Zhengchao1,Wong Pak Kin2,Ma Xinbo2,Cao Yucong3,Zhao Jing2

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510000, China e-mail:

2. Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau e-mail:

3. Automotive Engineering Institute, Guangzhou Automobile Group Co., Ltd., Guangzhou 510000, China e-mail:

Abstract

The vehicle active suspension has drawn considerable attention due to its superiority in improving the vehicle dynamic performance. This paper investigates the nonfragile H∞ control of delayed vehicle active suspension in a finite frequency range under nonstationary running. The control objective is to improve ride quality in a finite frequency band and ensure suspension constraints, and a quarter car model of the active suspension is established for a controller design. Then, the input delay, actuator uncertainty, and external disturbances are considered in the controller design. Moreover, a further generalization of the strict S-procedure is utilized to derive a sufficient condition in terms of linear matrix inequality (LMI) to capture performance in the concerned frequency range. Furthermore, a multi-objective controller is designed based on projection lemma in the framework of the solution of LMIs. A nonstationary road profile is established, and numerical simulations are also conducted to show the effectiveness and robustness of the proposed controller. Finally, experimental tests on a quarter-car test rig are implemented to examine the performance of the proposed controller for real applications.

Funder

National Natural Science Foundation of China

Universidade de Macau

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3