Thermal Fatigue of Composites: Ultrasonic and SEM Evaluations

Author:

Forsyth D. S.1,Kasap S. O.1,Wacker I.2,Yannacopoulos S.2

Affiliation:

1. Department of Electrical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 0W0

2. Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 0W0

Abstract

Results are presented on the evaluation of thermal fatigue in three fiber reinforced polymer composites, using ultrasonic techniques and scanning electron microscopy. The composites examined were (a) continuous carbon fibers in a vinylester matrix (b) continuous aramid fibers in a vinylester matrix and (c) randomly oriented aramid fibers in a polyphenylene matrix. Specimens of these composites were subjected to thermal fatigue by thermal cycling from −25°C to 75°C. Changes in ultrasonic attenuation and velocity were monitored during thermal cycling, and scanning electron microscopy was used to qualitatively evaluate any damage. It was observed that ultrasonic attenuation is sensitive to thermal fatigue, increasing with increasing number of thermal cycles. SEM evaluations showed that the primary damage due to thermal fatigue is due to fiber-matrix debonding.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3