Average and Local Effect of Thermal Fatigue on the Coefficients of the Thermal Expansion of a Complex Continuous Composite Fibre Used for Car Clutch Facing: A Multi-Technique Study

Author:

Flament Camille12,Berthel Bruno1ORCID,Salvia Michelle1,Graton Olivier1,Alix Isabelle2

Affiliation:

1. Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France

2. Valeo Matériaux de Friction, Rue Barthélémy Thimonnier, 87020 Limoges, France

Abstract

The clutch facing is a complex organic matrix composite in dry clutch systems. When the clutch engages, there is a sliding contact between the clutch facing and the mating surfaces, resulting in temperature increases of up to 300 °C. These thermal cycles activate several mechanisms that can have consequences on such material: cracking and, more generally, the ageing of the polymer. The thermomechanical properties of the material therefore evolve according to the number of thermal cycles. This study focused on investigating the local and average evolution of the coefficients of thermal expansion (CTE) of clutch facing as a function of thermal cycles. Several techniques were employed, including image stereocorrelation for determining the CTE, Dynamic Mechanical Analysis (DMA) tests for monitoring the ageing of the material and acoustic emission for highlighting the damage. The results showed that the average CTE decreased as a function of the temperature and the number of loading cycles, while locally, it increased in some areas and decreased in others. These differences appear to be the result of material heterogeneity (actual yarn tracing, etc.) and interaction between cracking and ageing mechanisms in the polymer matrix. Indeed, thermal cycling led to cracking and additional crosslinking, which is influenced by ageing conditions.

Funder

ANRT

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3