A Novel Variable Extensometer Method for Measuring Ductility Scaling Parameters From Single Specimens

Author:

Smith Adam J.1,Maxwell Hannah L.1,Mirmohammad Hadi2,Kingstedt Owen T.2,Berke Ryan B.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Utah State University, 4130 Old Main Hill, Logan, UT 84322

2. Department of Mechanical Engineering, University of Utah, 201 Presidents’ Cir, Salt Lake City, UT 84112

Abstract

Abstract Macro-scale ductility is not an intrinsic material property but is dependent on the overall geometry of the specimen. To account for variety in specimen geometries, multiple ductility scaling laws have been developed, which scale ductility between different specimen sizes. Traditionally, these ductility laws rely on testing multiple different specimens of varying sizes to obtain material parameters, often done by varying gauge lengths. With the use of digital image correlation (DIC), this study presents a technique where multiple different gauge lengths are extracted from a single specimen to obtain ductility scaling parameters from a single experiment. This technique provides orders of magnitude more data from each specimen than previous techniques. This variable extensometer method is then validated by testing multiple different geometries, and select scaling laws are then compared.

Funder

Nuclear Energy University Programs

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3