A QFT Framework for Antiwindup Control Systems Design

Author:

Moreno J. C.1,Baños A.2,Berenguel M.1

Affiliation:

1. Departamento Lenguajes y Computación, University of Almeria, Carretera de la Playa, s/n La Cañada de San Urbano, Almeria 04120, Spain

2. Departamento Informática y Sistemas, University of Murcia, Campus de Espinardo, Murcia 30100, Spain

Abstract

The paper is devoted to the robust stability problem of linear time invariant feedback control systems with actuator saturation, especially in those cases with potentially large parametric uncertainty. The main motivation of the work has been twofold: First, most of the existing robust antiwindup techniques use a conservative plant uncertainty description, and second, previous quantitative feedback theory (QFT) results for control systems with actuator saturation are not suitable to achieve robust stability specifications when the control system is saturated. Traditionally, in the literature, this type of problems has been solved in terms of linear matrix inequalities (LMIs), using less structured uncertainty descriptions as given by the QFT templates. The problem is formulated for single input single output systems in an input-output (I/O) stability sense, and is approached by using a generic three degrees of freedom control structure. In this work, a QFT-based design method is proposed in order to solve the robust stability problem of antiwindup design methods. The main limitation is that the plant has poles in the closed left half plane, and at most, has one integrator. The work investigates robust adaptations of the Zames–Falb stability multipliers result, and it may be generalized to any compensation scheme that admits a decomposition as a feedback interconnection of linear and nonlinear blocks (Lur’e type system), being antiwindup systems as a particular case. In addition, an example will be shown, making explicit the advantages of the proposed method in relation to previous approaches.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference44 articles.

1. Control of Plants With Input Saturation Nonlinearities;Doyle

2. Chronological Bibliography on Saturating Actuators;Bernstein;Int. J. Robust Nonlinear Control

3. Special Issue: Control Problems With Constraints;Stoorvogel;Int. J. Robust Nonlinear Control

4. Direct Digital Control Algorithm With Anti-Windup Feature;Fertik;ISA Trans.

5. Conditioning Technique, A General Anti-Windup and Bumpless Transfer Method;Hanus;Automatica

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3