A Control-Oriented Framework for Direct Impulse-Based Rendering of Haptic Contacts

Author:

Mohtat Arash1,Gallacher Colin1,Kövecses József1

Affiliation:

1. Department of Mechanical Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC H3A 0C3, Canada e-mail:

Abstract

In many haptic applications, producing a sharp feeling of impact is crucial for high-fidelity force feedback rendering of virtual objects (VOs). Although suitable for rendering collision-rich haptic interactions, impulse-based methods are rarely used in a pure form. Instead, they are combined with penalty-based elements in different forms such as virtual couplings (VCs) and hybridization. In this paper, we first propose the direct impulse-based paradigm for rendering haptic contacts using a new sampled-data interpretation of the impact problem. Then, we cast this interpretation into a systematic framework entitled the generalized contact controller (GCC). This enables us to implement different contact rendering methods as controllers and to improve them by appropriating a wide array of analysis and design tools developed in the control field. We specifically show how to apply position and velocity corrections to the purely impulse-based contact controller for enhancing its energy and sustained contact characteristics, and how to add an anti-windup compensator (AWC) for meeting actuation limits. These propositions are validated via simulation and experiments, as well as via human perception studies. Results show the promising aspects of the proposed impulse-based methods for generating a sharper unfiltered feeling of rigid-body contacts even at low sampling rates.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3