Pore Scale Numerical Investigation of Mixed Convection From an Isolated Heat Source in a Channel With a Porous Insert

Author:

Yerramalle Vijayalakshmi1,Premachandran B.1,Talukdar Prabal1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Abstract

Abstract Mixed convection heat transfer in a channel filled with porous medium and containing an isolated heat source at the bottom wall is studied in this work. The porous medium is assumed to be made of circular cylinders and is placed only on the heater surface. Three different configurations of porous medium are considered in this study. Pore-scale numerical simulations are carried out using the exact geometry of porous medium. The same configuration is also investigated using the volume-averaged approximation. The temperature distribution of the heater surface obtained from the pore-scale numerical simulation is compared with the results obtained from the volume-averaged numerical simulation. Parametric studies are carried out by varying the material of the cylinders, the porosity, and the height of the porous medium. The effects of Grashof number and Reynolds number of the flow are also studied as part of this investigation. The results obtained from the pore-scale numerical simulations show that the presence of the porous medium leads to reduction in heat transfer, while the results obtained from the volume-averaged numerical simulations show an enhancement of heat transfer due to the presence of the porous medium on the heater surface. However, the pore-scale numerical simulation results show that the heat transfer enhancement is only possible if the channel height is completely filled with the selected porous medium.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Validation of local thermal equilibrium (LTE) in porous media for variation in flow rate and permeability: transient analysis;International Journal of Advances in Engineering Sciences and Applied Mathematics;2023-06-22

2. EFFECT OF POROSITY VARIATION ON THE HEAT TRANSFER PERFORMANCE OF A CHANNEL WITH POROUS RIB: PORE-SCALE SIMULATION;Proceeding of International Heat Transfer Conference 17;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3