Forced Convection in a Porous Channel With Localized Heat Sources

Author:

Hadim A.1

Affiliation:

1. Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030

Abstract

A numerical study is performed to analyze steady laminar forced convection in a channel filled with a fluid-saturated porous medium and containing discrete heat sources on the bottom wall. Hydrodynamic and heat transfer results are reported for two configurations: (1) a fully porous channel, and (2) a partially porous channel, which contains porous layers above the heat sources and is nonporous elsewhere. The flow in the porous medium is modeled using the Brinkman-Forchheimer extended Darcy model. Heat transfer rates and pressure drop are evaluated for wide ranges of Darcy and Reynolds numbers. Detailed results of the evolution of the hydrodynamic and thermal boundary layers are also provided. The results indicate that as the Darcy number decreases, a significant increase in heat transfer is obtained, especially at the leading edge of each heat source. For fixed Reynolds number, the length-averaged Nusselt number reaches an asymptotic value in the Darcian regime. In the partially porous channel, it is found that when the width of the heat source and the spacing between the porous layers are of the same magnitude as the channel height, the heat transfer enhancement is almost the same as in the fully porous channel while the pressure drop is significantly lower. These results suggest that the partially porous channel configuration is a potentially attractive heat transfer augmentation technique for electronic equipment cooling, an end that motivated this study.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3